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A linearized theory, which treats unsteady motions of a wing of large aspect ratio 
at variable forward speed in an inviscid incompressible fluid, is developed, using 
the method of matched asymptotic expansions. The wing geometry and motions 
are specified; and the time-dependent lift and moment are obtained. Long-time 
asymptotic behaviour of an initial-value harmonic motion is presented, as are 
the short-time solutions of a wing starting from rest, with constant acceleration 
and with impulsive acceleration to constant speed. Some attention is given to 
flapping flight. Results are presented in quadrature form for a general class of 
unsteady wing motions. 

1. Introduction 
The success of Prandtl’s lifting-line theory has prompted many investigations 

toward a more encompassing theory. The investigations generally concentrate 
on the development of an integral equation pertinent to the particular lifting-line 
problem considered. A quite different approach was made by Van Dyke (1963, 
1964), who applied matched asymptotic expansions to a large aspect ratio wing 
at incidence to a steady free stream. He consequently avoided the difficulties of an 
integral equation, and reduced the problem to one of quadrature, upon obtaining 
systematic refinements to the two-dimensional results, in terms of an asymptotic 
series involving the inverse aspect ratio. 

This paper develops a linearized theory, which treats unsteady motions of a 
wing of large aspect ratio at  variable forward speeds in an inviscid incompressible 
fluid. The wing geometry and motions are specified; and the time-dependent lift 
and moment are obtained. A fundamental assumption is that spanwise perturba- 
tions are small on a scale of the flow in planes normal to the span. The method of 
matched asymptotic expansions is used to obtain Prandtl’s acceleration potential 
@ to one order higher, in inverse aspect ratio, than the strip-theory result. The 
acceleration potential has been adopted, because it is mathematically more 
convenient than the velocity potential, which suffers from a discontinuity across 
the vortex wake. 

The solution is obtained by considering a series of simplified problems related 
to the full problem, in the outer and inner regions. In  the outer region, the wing is 
represented by a line distribution of pressure singularities, whose strengths vary 
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with time and spanwise location. The lowest-order singularities, occurring on the 
loaded line, are pressure dipoles with axes parallel to the wing normal. These are 
followed by pressure quadrupoles and higher-order multipoles. I n  the inner 
region, the problem becomes a local investigation of the unsteady motion of a 
two-dimensional airfoil section. The unsteady, induced velocity on a wing section, 
owing to the vortex wake, introduces a second-order correction to the acceleration 
potential in the inner region. The induced velocity is obtained from analysis in 
the outer region. 

Long-time asymptotic behaviour of an initial-value harmonic motion is pre- 
sentled, as are the short-time solutions for a wing of large aspect ratio, starting 
from rest, with constant acceleration and with impulsive acceleration to constant 
speed. Results are compared with two-dimensional unsteady airfoil theory, and 
with three-dimensional steady airfoil theory. 

2. Formulation 
We consider a wing of large aspect rat’io, with variable forward speed U(t ) ,  

executing unsteady motions normal to the wing planform. For this investiga- 
tion, t’he wing speed is assumed to be small enough to regard the fluid as incom- 
pressible. The characteristic Reynolds number, based on wing speed and mean 
chord length, however, is assumed to be large. The boundary layer along the wing 
surface is then confined to a narrow adjacent region, and further manifests itself 
in a thin wake downstream of the trailing edge. We neglect the wing boundary 
layer, by taking the viscosity to be zero. I n  the wake, the viscous effects are 
represented by a planar free vortex sheet, which emanates from the trailing edge, 
and propagates rearward with with stream velocity U(t) .  

Attention is confined to wing geometries of large aspect ratio, where spanwise 
perturbations are mild compared with those in planes normal to the span. This 
fundamental assumption is violated a t  wing tips of ‘large’ curvature, and gives 
rise to a local region of non-uniformity. Uniform validity can be achieved by 
matching the ‘wing-tip solution’, with the inner and outer solutions. This 
problem is not treated here. Severe wing-tip difficulties can reasonably be 
handled, by requiring the loading to fall gradually to zero a t  the tips over the 
region of non-uniformity. A quantitative estimate of the extent of this region can 
be obtained. The results are not valid for ‘large’ spanwise motions, where other 
considerations are necessary. (See James 1973.) 

At the initial time t = 0, the wing is a t  rest in a quiescent fluid, and subsequently 
achieves a forward speed U(t )  a t  a later time t. The wing is sufficiently thin that 
the tra.nsverse displacements of each element of its surface can be described by 

in the co-ordinate system fixed to the wing’s mean position and where y = 0, 
x = c(s) A-l (Is1 < 1) gives a symmetric wing planform. The development can 
readily be extended to include planforms with chordwise and spanwise asym- 
metries. The arbitrary function h(x, s, t )  is constrained by admit,t,ing only wing 



Lifting-line theory for  un unsteady wing 

Y 

75 5 

s=const. 

displacements that are within the scope of a linearized theory. That is, we admit 
displacements such that 

--h, a --h, a U-1-h a N o(l) .  
ax as at 

The kinematic boundary condition on the wing specifies the normal component 
of fluid velocity, which to the linear approximation is 

h(x,  S, t )  = V,(X,  8, 7) 

( y  = 0*, 1x1 < c(s)A-l, Is1 < 1). (2) 

In  (2) r is the rectilinear arc length transversed by the wing: 

r ( t )  = U ( t ) d t ,  dr  = U ( t ) d t .  1: (3) 

For positive-definite U(t ) ,  there is a one-to-one correspondence between t and r, 
so that t = t(r) exists. In the sequel, we assume U > 0 for t > 0, and regard those 
variables which depend on t to be dependent variables of 7 instead. 

The linearized Euler equation, relating pressure and velocity, can be written as 

where 

(4) 

(5) 

is a modified form of Prandtl’s acceleration potential, and measures the variation 
of the pressure p from the static level p,.  The fluid density is p. 

D = a/ar + apx  

is a linearized form of the substantial derivative. The perturbation velocity field 
is q(x,r) = (u,v,w) and is divergence and curl free in the field bounded by the 
wing, the shed vorticity and an encompassing surface at  infinity. 
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FIGURE 1. (a )  Planform of a lifting wing in an unsteady stream. ( b )  Typical wing section. 
Mathematically, the wing is represented by the motion of a waving plate of negligible 
thickness. A singularity at the leading edge of the plate approximates a rounded nose. 
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By taking the divergence of (a), we see that the acceleration potential satisfies 
the Laplace equation in the field: 

Across the wing surface, a@/& is continuous, and specified from (4) and (2) to be 

V W  = 0. (6) 

(7) a@(X,7)/ay = D C ( X , S , T )  (y = o-+, 1x1 < C(s)A-', IS ]  < 1). 

From the linearity of @, the boundary condition (7) and the physical requirement 
that the pressure be continuous everywhere except across the wing, we can infer 
that @ is an odd function of y. Hence 

@(x,O,s,7) = 0 for 1x1 > e(s)A-l. (8) 

The Kutta-Zhukovskii condition bounds the pressure along a sharp trailing edge. 
Consequently, it introduces streamwise asymmetry into the problem, since @ may 
have a singularity a t  the leading edge. Thus 

I @ ( X , T ) l  < 00 (x = c(s)A-l, y = 0, 181 < 1) .  (9) 

The boundary-value problem becomes well posed when we further stipulate 
that the pressure returns to the static level a t  infinity. 

@(x,7) - t o  as 1x1 +co. (10) 

The solution to the linearized boundary-value problem defined by (6)-(10) 
takes the form of a distribution of pressure dipoles over the wing planform area 
projected onto the plane y = 0. 

where 

9 ( x ,  s ;  7) is the localized pressure jump existing on the wing a t  a point (x, s )  after 
the wing has traversed a forward distance 7.  This can be seen from ( 1 l), by fixing 
a point (x, s )  on the wing, and taking the limit as y -+ 0 & , to give 

92 = [(x - [ J 2  + y2 + ( s  - s,)~]& and c1 = c(sl). 

pU[@(x ,  O f ,  s ;  7 )  - @(x, 0-, s;  7)] = p-(x, s ;  7) -p+(x, s ;  7) 

= Ap(x,s; 7) = ~ ( x , s ;  7) (1x1 < cA-l, Is1 < I ) .  (12) 

It follows, from (4), that the velocity field is given by 

where +([; x) = 7 + < - x  and ek (k = 1,2,3)  

are unit base vectors along the (x, y, s) co-ordinate axes. 

3. Matched asymptotic expansions : principal results 
Formally, we allow the aspect ratio of the wing to become infinite, and deal 

separately with two simplified asymptotic limits of the problem. These correspond 
to the two cases of holding the span fixed and letting the chord tend to zero (outer 
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limit), and of holding the chord fixed and letting the span tend to infinity (inner 
limit). In  the outer limit, the wing collapses to a loaded line. In  the inner limit, 
the ‘section characteristics ’ are manifest, where the problem becomes essentially 
one of two-dimensional unsteady airfoil theory. The outer and inner limits are 
indeterminate representations of the full problem, since each lacks some essential 
aspects of the problem: the ‘section characteristics’ in the outer limit, and the 
interaction of wing sections in the inner limit. A matching of two expansions 
is needed, to resolve the indeterminacy. 

3.1. Outer limit 
We seek a limiting form of @ which is valid in the outer region where the wing 
shrinks to a loaded line. This is obtained from the solution to the full problem (1 1)  
by letting t,he chord c(s) A-l tend to zero. In the limiting process, we expand the 
kernel function 9 - 1  in a Taylor series for small 5, and integrate term-by-term 
over the chord. Since 

R = [r2 + ( s  - s1)~]4-, r2 = x2 + y3, I 
we obtain t,he two-term outer expansion of CD. 

where 
c, A - I  c, A-’ 

Z(sl; 7 , A )  = 1 .=9(t,s1; 7 ) d t ,  m(s1; 7 , A )  = - 1 tat-, 8,; 7 ) d t .  (16) 
-c lA- l  - C I A - ’  

In  the outer region, the acceleration potential becomes a spanwise distribution 
of pressure multipoles, the least singular one having dipole character and 
a strength equal to the section lift. The quadrupole distribution is of strength 
equal to the first moment of the chordwise lift (positive, nose-up). As the order of 
the multipoles retained in the outer solution is increased, successively higher 
moments of section lift are introduced as corresponding distribution strengths. 
In  this way, the outer solution becomes an increasingly refined representation of 
the full solution. The spanwise lift I ( $ ;  7, A )  and moment m(s; 7, A )  each depend 
parametrically on the aspect ratio A .  Later, they will be expanded in an asymp- 
totic series in the inverse aspect ratio. It is worth noting t,hat (15) can be obtained 
formally from (I  1)  by specifying 

where S(5) is the Dirac delta function. 
We can check that (15) satisfies Laplace’s equation everywhere except on the 

loaded line. In  the outer region, we forego the detailed implications of the wing 
conditions (7)  and (9). We have, however, maintained their broader consequences, 
in that @ is odd in y and has streamwise asymmetry. Furthermore, at infinity CD 
vanishes. 
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3.2. Induced velocity 

In  this singular perturbation problem, the induced flow on the wing connects the 
inner and outer limits of the full problem. I n  the outer region, a simplified approxi- 
mation of the induced flow will be evaluated. It will be applied as a correction to 
the specified geometric normal velocity of the wing in the inner region. Within the 
context of the linearized full problem, the component of the velocity normal to the 
wing planform on y = 0 is, from (13) and (11)) 

I n  the outer limit where the chord tends to zero the leading contribution to the 
downwash is uniform over the chord. I n  (17), we assume 

and perform the chordwise integration. Making the change of variable 7, = x - $, 
dr, = - d f ,  integrating by parts with respect to 7, and setting x to zero gives 

Additional information about the chordwise distribution of induced flow on the 
wing can be obtained by including further terms in (17); but, to the order of 
accuracy of this theory, matching shows such detail to be irrelevant. 

The integral over t)he span must be interpreted as a Hadamard integral, to 
avoid improper contributions. This has a physical basis, since we must subtract 
the infinite contribution of the elemental vortex tube that exists a t  the particular 
spanwise station s where the induced velocity is being evaluated. A thorough 
treatment of Hadamard integrals is contained in Mangler (1951). 

Later, for matching purposes, the asymptotic limit of the outer solution, as 
r + 0, is required. The expansion follows by using the Fourier representation of 
R-l in (15), namely 

and termwise inverting the ascending-series representation of the modified 
Bessel function KO. Introducing stretched variables 

B = Ecos8 = Ax, 9 = f s in8  = Ay and B = Ar, 

the desired result can be expressed as 

I sin 0 
lim @(x; r )  N - ( l ( s ;  7, A) - + O[Z(s; 7, A )  A-210gA] 
A+m 27rp u B 

+fixed 

- +O[A-Im(s; 7,A)lfHOT 
sin 28 

f 2  
,AWL($; 7, A )  - 

t See Erd6lyi et al. (1954, p. 49, (40), p. 105, (46 ) ) ,  and extend each equation to  the negative 
real axis. 
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This result can be verified immediately by taking derivatives (and taking care of 
the appropriate order-of-magnitude changes) of the standard slender-body source 
distribution expansion. (See e.g. Ashley & Landahl 1965.) I n  the limit r -+ 0, the 
distributions of three-dimensional dipoles and quadrupoles reduce to their two- 
dimensional counterparts plus regular terms (denoted by order symbols). It is 
significant that the regular terms are two orders of magnitude smaller in inverse 
aspect ratio than their respective antecedents. 'HOT' stands for the neglected 
higher-order multipole terms of the outer expansion. According to the principle of 
minimum singularit'y (Van Dyke 1964, p. 53), the correction introduced by 
retaining a higher-order singularity should be small on a scale of the primary 
influence of an antecedent lower-order singularity. On this basis, the quadrupole 
term provides a small correction to the leading order of the dipole contribution. 
For our problem, this principle gives the correct ordering. Equation (1 9) repre- 
sents the two-term inner expansion of the two-term outer expansion of 0. 

3.3. Inner limit 

The details of the flow close to the wing are investigated by stretching the 
co-ordinates normal to the span, so that the two-dimensional character of the 
flow is emphasized. If we choose 

for inner variables, the relevant length scale becomes the semichord cfs). Magni- 
fying time t is mathematically convenient, and does not alter the form of solution, 
since time enters as a parameter. However, we must later return to the proper 
time scale for physical interpretation. As a consequence of (20)) the near field is 
characterized by variations of the physical quantities having 

a a a  a 
ax' ay' at as 
- -  - - O ( A )  and - - O(1). 

The wing displacement function 72.(x, s, t )  and its associated normal velocity 
V,  (see ( I ) ) ,  when referred to inner variables, are 

J al 

t(9, s, .-f) = &(s, t^(.f)) + bj(S, 8f.i)) cosj8 (a = c cos 8) ,  
j=l 

where the Fourier coefficients are 
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It is noteworthy that the geometrically specified normal velocity of the wing 
section appears independent of the aspect ratio. As a consequence, we tentatively 
expand the normal velocity a(2, fj; s, 'i, A )  on the wing as 

(121 < c ,  Is1 < 1 , Q = O k , A + c o )  

(24) 

q2,g; s,?, A )  - al(i2,g; s,?) +A-1a2(2,Q; s,'i) + ... 

- q@,s,'i)-q(s,'i,A), 
,. h 

8,(2,0; s, 'i) = %(a, s, 'i), 82(2, 0;  s ,  'i) = - lim AV,(s, 'i, A):  
A+m 

fi(s, 'i ,A) = K(s, +A-1, A) ,  

Thus, the wing is impervious to the induced flow, which presumably makes a 
small correction to the velocity 8. The correction velocity a2(2, 0; s, 'i) is uniform 
over the chord, the appropriate 'Prandtl-order' result for a wing of large aspect 
ratio. Higher-order refinement will obviously bring in chordwise variation as 
well. 

I n  the inner region, the acceleration potential @(x; T )  is expressed as 
@(&; r )  = q5(2,fj; s, 'i, A) ,  where q5 depends parametrically on s and r,  and may be 
expanded in an asymptotic series in the inverse aspect ratio : 

#(2, f j ;  s,?, A )  - &'$,(a, fj ;  S ,  'i) +A-2q52(2, Q, 8, 'i) + ... ( A  -+ GO). (26) 

It follows from (23) and the wing boundary condition ( 7 ) ,  expressed in terms of 
inner variables, that #(2, Q; s, .i, A )  - O(A-1). The order of the second t,erm in the 
expansion (26) must be regarded as a conjecture a t  this stage. Using (20),  (23) 
and (26), the full problem becomes 

Because we have introduced stretched variables, the behaviour of cj at infinity 
is lost. It is sufficient (at least for the first two terms of the asymptotic expansion 
of 4 )  to assert that # vanishes at infinity. An arbitrary function of s and r is ruled 
out, since # is an odd function of y. Unbounded behaviour proves t'o be un- 
matchable. It can be seen from (27)-(31) that, if the correction term to t,he strip- 
theory result is O(A-2),  the boundary-value problems for and #2 are identical. 
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The solution of this classical problem can be found in the literature. (See e.g. 
Wu 1971a.) 

q5k(d,Q; s,+) = Re (32) 

h z = B+iQ, 2 = Pcos8, d = Psin8, P = (d2+Q2)i, 

KO and K ,  are modified Bessel functions. In  the solution (32), [ (a  - c)/(2 + c)]* has 
a branch cut from 2 = -c to 2 = c, and tends to unity as 12) --f co. Taking the 
limit as 121 --f co of $k(2, @; s, 'i) in (32) results in the outer expansion of the inner 

Substituting (34) into (26), and using (20 )  to express the result in physical 
variables, gives, for the two-term outer expansion of the two-term inner 
expansion, 

( A  --f 03, v fixed). (37) 
Provided the wing does not have abrupt spanwise geometric variations, this 
expression will be uniformly valid in s. As mentioned previously, special attention 
must be given to 'blunt ' wing tips. 

From (19) we rewrite the two-term inner expansion of the two-term outer 
expansion as 

sin 8 
2-term inner 

2-term outer 
A ) - + O [ l ( s , 7 ;  P A)A-210gA] 

+ O[A-lm(s, 7 ;  A ) ]  ( A  --f co, rfixed). 
sin 28 

6 2  
-AAm(s,T; A ) -  
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Inner potential Outer potential Matching result 

1TO( 1TI) 1TI( 1TO) 
Z ( ~ , T ,  A)  sin8 Z(S,T,A) = 27rpUUh,(~,5)A-~ A-l[w]~ I 

2TO( 1TI) lTI(2TO) \ 
z(S,T, A )  = 277pUh, (S,?) k1 

m(s,T,A) sin20 ~ ( s , T , A )  = -27rpUp1(s,i;)A-~ 

l ( s , ~ , A )  = 277pU 

i A-1 [ !  s , ~ , A ) s i n O  - 
27rpU r 

2npu 9.2 1 
lTO(2TI) 2TI( 1TO) 

Z(S,T,A) = 2npU 

m(s,T,A) = - 2 n f U  * P  L+2 P 
(Az  A 3 )  

2TO( 2TI) 2TI( 2TO) 

fA-1 z+A. pz] 7 
TABLE 1 

The inner and outer expansions must be matched, using the same spatialvariables. 
T and t are free parameters with respect to  the matching, and are not influenced 
by the limit A --f m. The matching proceeds with (37) and (19), even though we 
use + in one and r in the other. As mentioned previously, however, + must be 
replaced with AT for the proper physical interpretation of the final results. 

Table 1 presents the results of a step-by-step application of the asymptotic 
matching principle (Van Dyke 1964). The m-term inner expansion of (the sz-term 
outer expansion) equals the n-term outer expansion of (the m-term inner 
expansion). The unmatchable regular terms of the outer solution are O ( A P  log A) ,  
in terms of the inner variables, and may be disregarded. They will match, how- 
ever, with the third-order inner acceleration potential c$~, which satisfies a two- 
dimensional Poisson equation and has B sin 19 behaviour as P + m. It is simple to 
justify the validity of the assumed expansion of the inner acceleration potential 
(26) since Z ( S , T ;  A )  N O(A-I).  The quantity Ac(s,+; A )  is independent of the 
aspect ratio as A -+ 00, so that the induced flow is indeed a small correction to c. (See (23)-(25).) From (24), (25) and table 1, we define &(s,+) as 

G,(x,O; s,?) = -8 (s ,+ )  (121 < c, Is/ < l), 

I n  table 1, the second level of matching displays the strip-theory results for the 
lift and moment. They can be expressed in terms of the Fourier coefficients of 

given in (21). Using (33) in (35) and (36), and performing one integration by 
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parts, allows one to introduce the Fourier coefficients in each term. The corre- 
sponding two-dimensional expressions for lift and moment, developed by Wu 
(1971a), are recovered. 

] (39) 
a 1 a7 

Al(s, f )  = &C a,(s, f )  - b,(s, f ) - &, [b,(s, f ( f ) )  - b,(s, f ( $ ) ) ]  , 

al(s, 'i) + b,(s, f )  + 

A, and p, can be written down by inspection of (39)-(41). In  fact, A, and p, are 
equal to A, and,,uu,, respectively, when b, is replaced by - 2@s, 9)  and b,, b, and b, 
are set to zero. Hence. 

4. Matched asymptotic expansions : results for short- and long-time 
limits 

The principal results of this investigation are contained in (38)-(43). In  .the 
sequel we shall develop results for short- and long-time limits for various wing 
motions. The particular cases of interest are readily investigated in the Laplace 
transform plane, where the transform is taken with respect to the unstretched 
'time' T. Since f = AT, the transformed equations (39)-(43) depend on the aspect 
ratio. 

Xl(s,p; A )  = 1 exp ( - p ~ )  h,(s, T A )  d7 = ~ - 1  exp [-  (PAP) $1 A, (s, d.i 
!OW SOm 

= A-lX1(s, pA-1) 

= *cA-l{Z,(s,pA-l) -b",(s,pA-l) - *cpA-l[b"l(s,pA-l) -b",(s,pA-l)]}, 
(44) 

jz,(s,p; A )  = %c2A-1{CZ1(s,pA-l) +b,(s,pA-l) + &cpA-1[b",(s,pA-l) - b",(s,pA-1)]}, 
(45) 

B(cpA-1) = K1(cpA-l) [KO(cpA-l) + K,(cpA-l)]-l, (47) 

Z,(s,pA-') = b",(s,pA-,) - B ( p c k l )  [b",(s,pA-l) +b",(s,pA-l)], (46) 

f%Is-sl) = Pls-s,I{+n[H,(P Is -811) -Y1@ Is-s1l)l- 11. (51) 

KO, K ,  are modified Bessel functions, 5 is a Bessel function of the second kind, 
and H, is a Struve function. 
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The long- and short-time limiting forms for the lift and moment are obtained 
by taking thelimits of (44)-(51) as lpl -+ 0 andp -+ 00, respectively, andinverting. 
The following series expansions of I? and Q,  developed in Abramowitz & Stegun 
(1964), will be useful: 

limI?(<) - 1 + (y  + log 2)  <+ <log<+ O(C210g2 <), 

Iim Q(<J N 1 - cl + +(+ +log 2 - y)<: - +<2,log cl + O(<!), 

limI?(<) N i(i ++<-I) +0(<-2), 

lim Q(<J N <TI- 3 < ~ 3  + 0 ( < ~ 5 ) .  

<+:-to 

S r t O  

<+w 

<I-- 

Euler’s constant y = 0.57721. n and are each defined with a branch cut along 
the negative real axis. The differences in I? and in Q as we approach the branch cut 
from the bottom and the top are 

[I?-(<) - I?+(<)] N - 2n-i<+ O(y210g <) (< < 1, real and negative), 

[Q-(<J - Q+(cl)] N ni<:+ o(<;) (c1 < 1, real and negative). 

4.1. Impulsive acceleration to constant speed 

In this simple case, the wing is at  constant angle of incidence -a  to the direction 
in which a quiescent fluid is impulsively accelerated from rest to a constant 
speed U .  The situation is formally equivalent to a step-function change in angle of 
attack at constant forward speed. The non-vanishing coefficient for is 

b,(s,i) = - 2 u a  (i > O ) ,  

implying bYO(s,pA-l) = - 2UaA/p.  Equations (44)-(51) become 

X1(s,p; A )  = uacA(pcA-1)/p’ ( 5 2 )  

,&(s,p; A )  = $ U ~ c ~ B ( p ~ A - l l p ,  (53) 

The Laplace inversion formula is 

and in our special case B ( p )  has a branch cut along the negative real axis and a 
pole at  the origin. The path of integration can be deformed into a small circle 
(counter-cloclrwise) about the origin, and a contour C circumventing the negative 
real axis counter-clockwise. The contonr integral about the origin can be evaluated 
directly by the residue theorem, whereas the contour integral C can be evaluated 
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for large 7 by expanding the integrand for small IpI and applying Watson's 
lemma. For 7 cA-l, we obtain 

( 5 8 )  
(59)  ,U2(S, AT) = &h2(S, TA). 

In  (56)-(59), setting 7 = cn recovers the steady-state limit. Integrating the 
Hadamard integral by parts gives a Cauchy principal-value integral. The steady 
lift and moments per unit span are, therefore, 

m(s, 00; A )  2I - &t-lZ(s, co; A). (61)  

Equation (60)  is identical to Van Dyke's (1963, 1964) result. 

for large p and inverting : 
For small 7, the lift and moment are found directly from (52)-(55) by expanding 

h , (S ,  TA) - $uCZC{l + & T / ( C L ~ - ~ )  +o[(T/(CA-1)}2]}, 

pI(S, TA) = $Ch,(S, TA), 7 < CA-', 

Immediately after the initial instant, the lift and moment per unit span are 

Z(s,O; A )  N rrpU2acA-1(l+e$1 -44 -1 *zdsl+O(A-2)),  IS--s11 (62)  

m(s, 0; A )  N - &rpU2ac2A--2{1 +O(A-2)}. (63)  

The 'small' three-dimensional correction term of the initial lift expression is due 
to the impulsive pressure induced on each wing section by the starting vortex 
wake. Since this term is O(A-3) in the lift, the starting lift is essentially the two- 
dimensional value. 

4.2. Case of constant acceleration 0 
Only the initial motion is of interest here. We set U = ot; and during the 
acceleration the wing traverses a distance 7 = got2 a t  a constant angle of 
incidence - a. The non-vanishing Fourier coefficient is 

b,(s,.i) = -2U(t( . i ) )a  = -2a(27;ZA-l)*(+)*. 

The resulting lift and moment per unit span are found to be 

z(S, 7 ;  A )  ff 7rpo(C2A-2)(1 +o(t2, A-2)} (t < 1, A >> I), 
WZ( S , ~ ;  A )  N 7r~of~a(~3A-3){O(t2,A--2)} (t  < 1,  A 1).  
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The lift immediately attains a constant value, which varies directly with the 
acceleration 0, whereas the moment about the midchord is zero. The three- 
dimensionality enters as a higher-order effect in this small-time solution, again 
indicating that the wing initially responds as if its span is infinite. Since the centre 
of pressure is at  the midchord, the initial lift is due to the impulsive pressure 
generated by the starting motion. 

4.3. Simple harmonic motion at constant speed U 
We write the displacement of a thin wing section as 

g = fz@,s,t) = {$gO(~)+[[1(~)+j[2(~)]2}exp(jwA-1?) (121 < c). (64) 

&go is the sectional amplitude of heaving motion, and ~ ~ l + j [ z ~  is the sectional 
amplitude of the pitching about the midchord. The pitching leads the heaving 
by the phase angle ap = tg-l(<z/[l). The specified normal velocity of the wing 
section is 

I 
h 

V,($, 0, s, +) = {&bo(s) + bl(s) $/c} exp (jwA-lt") 
b,(s,+) = b,(s)exp (jwU-l+A-l) = {jwA-lg0(s) + 2U(c1(s) +j<,(s))}exp (joU-l+A-1), 

b,(s,+) = bl(s) exp ( j ~ U - ~ . i A - l )  = { jwA- lc ( s )  [[,(s) +jc2(s)]}exp (jwU-l+A-l), 

(121 < c), 

(65) 

b"o(~,pA-l) = Abo(s) [p-jw/U]-l, b",(s,pA-') = Abl(s) [p-jw/U]-l .  (66)) (67) 

Substituting (66)) (67) into (44)-(51) gives 

j&(s,p; A )  = -&c"(cpA-l) 

When inverting the above expressions the pole a t  p = j w / U  gives the steady- 
state oscillatory lift and moment. Before writing down the results, we define a 
number of terms, to appear in the final expressions: reduced frequency based on 

the semichord = wcA-l/U, 

reduced frequency based on the span length 1s - sll 

7 = +-s,l/U, 
Theodorsen's function 
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The steady-state results can now be found by inspection of (68)-(71). 

l(s,t; A )  = -- ?rpuc(b,(s) Q(a)+b,(s)@(a) 
A 
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b,(s) (I + gja) - [b,(s) + b,(s)] @(a) 

cT1 = wclA-l/U (cl = c(s1)). 

For physical interpretation, the real part of these equations must be taken. The 
quantities 0, II and i2 are complex. Their real and imaginary parts are plotted in 
figures 2 (a )  and (b).  The appendix presents these functions explicitly, together 
with their asymptotic forms for large and small values of their arguments. The 
steady-state results for a wing at constant incidence -a  to an impulsively 
generated uniform stream U (see (60)) become a special case of (73), on setting 
w = O , b ,  =Oandb,=-2Ua. 

For high-frequency oscillations (say, w N O ( A ) ) ,  

Q(a) N Qja+0(1), @(a) N ++O(a-l)  and n(7) N -j/7+O(7-3). 

If we define the ratios of the three-dimensional correction term to the two- 
dimensional lift and moment as E and 6, respectively, then 

The integrands are clearly O(l) ,  so that E N O(A-2) and 6 N O(A-lw-l), for 
w > O ( A ) .  Consequently, for high-frequency motion, the three-dimensional 
correction diminishes. For steady flow past a wing at  incidence, the downwash 
is known to give rise to an effective angle of attack which is less than the 
geometric angle. For oscillatory transverse motions, the variations of the stream- 
wise component of vorticity in the free-stream direction reduce the adverse 
effect of the downwash. We see that, for high-frequency oscillations, the wing acts 
essentially as if it has an infinite aspect ratio. 

4.4. Flapping wing 

When the wing planform executes a lateral displacement 

Q = +tO(s)exp(jwtA-l) (121 6 c, Is1 < 11, 

we have a case of flapping flight. When t o (s )  is constant along the span, the wing 
oscillates in pure heave. For these cases, we have 

Z(s, t ;  A )  N - ?rpU2ajt0(s) Q(a) C(s) exp ( j w t )  A-l, 
m(s, t ;  A )  N ?rpU2ajco(s) cA-l @(a) C(s) exp ( j w t )  A-l, 

( 74) 

(75) 
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FIGURE 2. (a)  Variation of real and imaginary parts of II, as a function of 7 = ~ 9 f U )  1s -slJ. 
( b )  Variation of real and imaginary parts of Cl and 0, as a function of the inverse reduced 
frequency g - 1 ~  U/OC. 

where 

For flapping flight the chordwise location of the centre of pressure xCQ(s) is seen 
to depend on the reduced frequency : 
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0 2 4 6 8 

0- 

FIGURE 3. Migration of the centre of pressure, as a function of reduced frequency, for 
flapping flight. (zap( - *c)-l = Re [O(cr)/Q(cr)] against cr = wc/U. )  

The asymptotic results indicate that the centre of pressure migrates away from 
the quarter-chord toward the midchord with increase of reduced frequency. 
The full variation of the centre of pressure is presented in figure 3. 

5. Concluding remarks 
The results of this work have been presented as asymptotic series in the inverse 

aspect ratio, in which three-dimensionality enters as a correction to the two- 
dimensional results. Besides the interesting cases of impulsive acceleration to a 
constant speed, constant acceleration, and simple harmonic pitching and heaving 
motion at constant forward speed, presented here, the theory is sufficiently 
general to permit quantitative treatment of a wealth of other practically im- 
portant unsteady wing motions. Provided compressible effects and low Reynolds 
number effects remain negligible, any positive speed of advance U(t)  can be 
entertained, as well as arbitrary ‘but small’ unsteady motions transverse to the 
wing plaiiform. 

The matching procedure renders the inner and outer expansions uniformly valid 
(except near certain wing tips) to one order higher in inverse aspect ratio than 

F L M  70 49 
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the strip-theory result. It is, therefore, possible to obtain the three-dimensional 
effects on thrust, rate of energy loss due to vortex shedding, and the power input 
necessary to sustain the motion. These can be readily calculated in the near field, 
using the appropriate expressions for the acceleration potential, normal wing 
velocity, and wing displacement gradients. 

The short-time solutions for lift and moment, and the high-frequency harmonic 
motion solutions, indicate that three-dimensional effects are not important, since 
they are O(A--2), compared with the primary effect. For such cases, a strip theory 
based on two-dimensional unsteady wing section analysis can be used with 
confidence. However, for long-time or steady-state conditions, where accelera- 
tions are not too ‘large), the three-dimensional correction is seen to be O(A-l), 
compared with the primary effect. 

The assumption that physical quantities exhibit mild spanwise variations is 
violated locally near the wing tips for certain tip shapes, and gives rise to a region 
of non-uniformity there, which becomes larger as the tip becomes blunter. For 
rectangular planforms, the spanwise distributions of lift and moment cannot 
be integrated to give total values, owing to the severity of the tip singularity. For 
elliptical planforms and finer shapes, the theory yields convergent total-value 
results. 

A numerical investigation is being prepared, to assess the three-dimensional 
effects of pitching, rolling, heaving, flapping and coupled modes of motion, for 
a family of planforms, and over a range of reduced frequencies. To assess the 
accuracy and range of applicability of the foregoing theory, there is also need for 
extensive experiments. 

The theory will be useful for optimization studies (Wu 1971 b ) ,  to determine 
optimal wing shapes and motions under various isoperimetric conditions. 

I should like to express my appreciation t o  the referees of this paper, for their 
many useful suggestions. The work reported here was sponsored by the in-house, 
independent exploratory development program of the Naval Ship Research and 
Development Center, Bethesda, Maryland 20084. It was presented at the 
Thirteenth International Congress of Theoretical and Applied Mechanics, 
August 3 972, Moscow State University, U.S.S.R. 

Appendix. Real and imaginary components of II, 0 and Q 

The complex functions I I (y) ,  0(g) and Q(c), defined by ( 7 2 ) )  can be separated 
into their real and imaginary parts. Using Abramowitz & Xtegun (1964, p. 358, 
(9.1.3), (9.1.4); p. 375, (9.6.4)) (9.6.5); p. 498, (12.2.1)), we find that II, 0 andQ 
can be expressed in terms of tabulated functions. 

n(7) = ~ I I , ( T )  +jnr(fj), 

n,(7) = 7&(7), 

nr(7) = 27[Ii(q) -Li(~)I/77-71 

@(C) = O,(C) +jOr(g), 
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